1. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014;103:137-149. PMID:
24630390
2. Esteghamati A, Meysamie A, Khalilzadeh O, Rashidi A, Haghazali M, Asgari F, et al. Third national Surveillance of Risk Factors of Non-Communicable Diseases (SuRFNCD-2007) in Iran: methods and results on prevalence of diabetes, hypertension, obesity, central obesity, and dyslipidemia. BMC Public Health 2009;9:167. PMID:
19480675
3. Tesfaye S, Selvarajah D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev 2012;28 Suppl 1:8-14.
4. Rathur HM, Boulton AJ. Recent advances in the diagnosis and management of diabetic neuropathy. J Bone Joint Surg Br 2005;87:1605-1610. PMID:
16326870
5. Tanenberg RJ. Diabetic peripheral neuropathy: painful or painless. Hosp Physician 2009;45:1-8.
6. Young MJ, Boulton AJ, MacLeod AF, Williams DR, Sonksen PH. A multicentre study of the prevalence of diabetic peripheral neuropathy in the United Kingdom hospital clinic population. Diabetologia 1993;36:150-154. PMID:
8458529
8. Amaral JL, Lopes AJ, Faria AC, Melo PL. Machine learning algorithms and forced oscillation measurements to categorise the airway obstruction severity in chronic obstructive pulmonary disease. Comput Methods Programs Biomed 2015;118:186-197. PMID:
25435077
9. Pina-Camacho L, Garcia-Prieto J, Parellada M, Castro-Fornieles J, Gonzalez-Pinto AM, Bombin I, et al. Predictors of schizophrenia spectrum disorders in early-onset first episodes of psychosis: a support vector machine model. Eur Child Adolesc Psychiatry 2015;24:427-440. PMID:
25109600
10. Elshazly HI, Elkorany AM, Hassanien AE. Lymph diseases diagnosis approach based on support vector machines with different kernel functions. In: Wahb AM, Institute of Electrical and Electronics Engineers (IEEE), ed. 9th International Conference on Computer Engineering & Systems (ICCES 2014). Cairo, Egypt: 2014 Dec 22-23. Piscataway: IEEE Service Center. 2014. 198-206.
11. Balasubramanian VN, Gouripeddi R, Panchanathan S, Vermillion J, Bhaskaran A, Siegel RM. Support vector machine based conformal predictors for risk of complications following a coronary Drug Eluting Stent procedure. Comput Cardiol 2009;36:5-8.
12. Majid A, Ali S, Iqbal M, Kausar N. Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines. Comput Methods Programs Biomed 2014;113:792-808. PMID:
24472367
13. American Diabetes Association. (2) Classification and diagnosis of diabetes. Diabetes Care 2015;38 Suppl:S8-S16.
15. Vapnik VN. An overview of statistical learning theory. IEEE Trans Neural Netw 1999;10:988-999. PMID:
18252602
16. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning: with applications in R. New York: Springer; 2013. p 349.
17. Hastie T, Tibshirani R. The elements of statistical learning: data mining, inference and prediction. Math Intell 2005;27:83-85.
18. Duan KB, Keerthi SS. Which is the best multiclass SVM method? An empirical study. Berlin: Springer-Verlag; 2005. p 278-285.
19. Kreßel UH. Pairwise classification and support vector machines. In: Schölkopf BB, Burges CJ, Smola AJ, eds. Advances in kernel methods: support vector learning. Cambridge: MIT Press; 1999. p 255-268.
20. Akbani R, Kwek S, Japkowicz N. Applying support vector machines to imbalanced datasets. Berlin: Springer-Verlag; 2004. p 39-50.
21. Tang Y, Zhang YQ, Chawla NV, Krasser S. SVMs modeling for highly imbalanced classification. IEEE Trans Syst Man Cybern B Cybern 2009;39:281-288. PMID:
19068445
22. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 2002;16:321-357.
23. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-174. PMID:
843571
24. Kiani J, Moghimbeigi A, Azizkhani H, Kosarifard S. The prevalence and associated risk factors of peripheral diabetic neuropathy in Hamedan, Iran. Arch Iran Med 2013;16:17-19. PMID:
23273229
25. Duckstein L, Blinowska A, Verroust J. Fuzzy classification of patient state with application to electrodiagnosis of peripheral polyneuropathy. IEEE Trans Biomed Eng 1995;42:786-792. PMID:
7642192