1. World Health Organization. WHO coronavirus (COVID-19) dashboard; 2021 [cited 2021 Jun 10]. Available from:
https://covid19.who.int/.
7. Briz-Redón Á. The impact of modelling choices on modelling outcomes: a spatio-temporal study of the association between COVID-19 spread and environmental conditions in Catalonia (Spain). Stoch Environ Res Risk Assess 2021;35:1701-1713. PMID:
33424434
9. Valente F, Laurini MP. Estimating spatiotemporal patterns of deaths by COVID-19 outbreak on a global scale. BMJ Open 2021;11:e047002. PMID:
34380721
11. Lee JH, Park MS, Lee SW. Spatiotemporal evolution and the diffusion pattern of COVID-19 in South Korea in three waves. Korea Spat Plan Rev 2021;110:43-62 (Korean).
12. Shim E, Tariq A, Chowell G. Spatial variability in reproduction number and doubling time across two waves of the COVID-19 pandemic in South Korea, February to July, 2020. Int J Infect Dis 2021;102:1-9. PMID:
33038555
20. Lawson A. Bayesian disease mapping: hierarchical modeling in spatial epidemiology. Boca Raton: Chapman & Hall/CRC; 2021. p 84-97.
21. Congdon P. Bayesian hierarchical models: with applications using R. Boca Raton: Chapman & Hall/CRC; 2021. p 221-229.
22. Martínez-Beneito MA, Botella-Rocamora P. Disease mapping: from foundations to multidimensional modeling. 1st ed. New York: Chapman and Hall/CRC; 2019. p 115-118.
23. Simpson D, Rue H, Riebler A, Martins TG, Sørbye SH. Penalising model component complexity: a principled, practical approach to constructing priors. Stat Sci 2017;32:1-28.
24. Moraga P. Geospatial health data: modeling and visualization with R-INLA and shiny. Boca Raton: CRC Press; 2020. p 53-58, 62-64.
26. Fuglstad GA, Simpson D, Lindgren F, Rue H. Constructing priors that penalize the complexity of Gaussian random fields. J Am Stat Assoc 2018;114:445-452.
27. Blangiardo M, Cameletti M. Spatial and spatio-temporal Bayesian models with R-INLA. Chichester: John Wiley & Sons; 2015. p 238-246.
28. Knorr-Held L. Bayesian modelling of inseparable space-time variation in disease risk. Stat Med 2000;19:2555-2567. PMID:
10960871
29. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Series B Stat Methodol 2009;71:319-392.
30. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model complexity and fit. J R Stat Soc Series B Stat Methodol 2002;64:583-639.
31. Wang X, Yue Y, Faraway JJ. Bayesian regression modeling with INLA. Boca Raton: Chapman and Hall/CRC; 2020. p 49-54.
33. Marquès M, Domingo JL. Positive association between outdoor air pollution and the incidence and severity of COVID-19. A review of the recent scientific evidences. Environ Res 2022;203:111930. PMID:
34425111
35. Lym Y, Kim KJ. Exploring the effects of PM2.5 and temperature on COVID-19 transmission in Seoul, South Korea. Environ Res 2022;203:111810. PMID:
34343550
36. Cressie NA. Statistics for spatial data. Hoboken: John Wiley & Sons; 2015. p 402-410.